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The symmetry of the two-dimensional. viscous, and incompressible flo~v past a circular 
cylinder is studied by disturbing tmpulsively the steady flow at Reynolds number 10, 2C. 43~ 
and 100. The propagation of this disturmbance is studied by dividing the stream and vorticity 
functions into steady and perturbed stream and vorticity functions. The steady stream and 
i:orticity functions are expanded in the finite Fourier sine series. The steady semianalytical 
solutions are obtained for the symmetrical flow as a limit of the time-dependent equations. 
The perturbed stream and vorticity functions are expanded in the finite Fourier sine and 
cosine series and then along with the steady stream and vorticity functions expansions sub- 
stituted in the Navier-Stokes equations. This leads to a system of coupled paraboiic partial 
differential equations in the coefficient functions of Fourier series which is solved numericaiiy. 
This system is solved with the initial condition which corresponds to the applied impulsive 
celocity to the surface of the cylinder in the perpendicular direction of the flow. Asymmetrrc 
vortices are observed for the Reynolds number (Re i 40 and a siight oscillation of the trai! of 
almost symmetrical wakes is seen for the Reynolds numbers 20 up to I = 100. The symmetrical 
standing vortices in the strictest sense are not observed for Re = 10 even up to I = 100. Vortex 
shedding is observed for Re = 100. For Reynolds number 10. the disturbance is applied con- 
tinuously up to I = 1, and asymmetric vortices exist up to t = 100. The symmetry of the Row 
depends on the disturbance level in the flow e\en at Reynolds number IO. 1. 1987 .Acadcn;c 
Prsss. Inc 

1. INTRODUCTION 

The problem of finding the flow past a circular cylinder is a classical one with an 
extensive literature; however, many questions remain unanswered. Coutancealr and 
Bouard [3] and Gerrard [8] determined that at Re = 34, the standing vortices 
become asymmetric, while Taneda [ 171 found that the wake begins to oscillate at 
Re = 30, where Reynolds number is defined by Re = 2aQ/v, where a is the radius of 
the cylinder, CT is the free stream velocity, and F is the kinematic viscosity. The 
measurements of the Strouhal number by Gerrard [8] in the Reynolds number 
range up to 350 are lower than those of Rosko [l5, la] and Tritton [19]. and so 
Gerrard suggested that this quantity may depend upon the disturbance level in the 
flow. Taneda [lS] has shown that close behind a cylinder, the wake can be made 
to oscillate by oscillating the cylinder for Re barely above unity. The follow-ing 
question can be raised: Does the initial disturbance play an important role for the 
Row to be symmetric around a circular cylinder? If the answer is yes, then is it 
possible to have an asymmetrical flow at lower Reynolds numbers? In order to 
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answer this question theoretically, the stability of the wake behind the cylinder is to 
be studied. The basic idea is to disturb the steady flow and then observe whether 
the disturbance dies away, persists as a disturbance of similar magnitude or grows 
so much that the steady flow becomes a different flow (see: e.g., Drazin and 
Reid [6]). 

Since we do not have as yet the exact steady solution for the flow past a circular 
cylinder, semianalytic solutions for the steady flow are first obtained as a limit of 
the time-dependent equations for various Reynolds numbers by using the finite 
series truncation method. Desai [S] obtained solutions by expanding the stream 
and vorticity functions in finite Fourier series for the steady flow of a viscous 
incompressible fluid past a circular cylinder for Re = I-40. Underwood [20], 
Dennis and Chang [4], Niewstadt and Keller [ 111, and Jafroudi and Yang [9] 
obtained the semianalytic solutions for the steady flows. Collins and Dennis [Z] 
and Pate1 [ 121 obtained the semianalytic solutions for the impulsively started sym- 
metric flows. Using the finite series truncation method, Pate1 [13, 141 obtained 
Kit-man vortex street behind a circular cylinder for Re = 100, 200, and 500, and 
semianalytic solutions for the impulsively started elliptic cylinder at various angles 
of attack. 

The steady semianalytic solution is disturbed, and the propagation of the distur- 
bance in space and time is observed in much the same way as in the laboratory 
experiment. The development of the disturbance is determined by expanding the 
disturbed stream and vorticity functions in the Fourier sine and cosine series and 
then substituting along with the steady stream and vorticity expansions in the 
Navier-Stokes equations for two-dimensional, viscous, and incompressible flows. 
This leads to a system of coupled parabolic partial differential equations in terms of 
the coefficient functions of Fourier series. This mathematical formulation is given in 
Section 2. In Section 3, we discuss the numerical solution technique of this coupled 
system. The disturbances and solutions are discussed in Section 4. This investigation 
is restricted by the assumption of two dimensionality and, therefore, valid as long 
as two-dimensional effects play the dominant role in the physical flow. 

2. BASIC EQUATIONS AND ANALYSIS 

Consider a steady laminar flow of a viscous incompressible fluid around a cir- 
cular cylinder of radius a. At time t = 0, the flow is disturbed. The equations which 
are assumed to govern the subsequent motions are the NavierrStokes equations 
and the equation of continuity, which are coupled and to be solved subject to the 
boundary conditions of no slip on the surface of the cylinder and irrotational flow 
at infinity. 

The governing equation of motion, nondimensionalised with reference to the free 
stream speed and the cylinder radius, can be written as 

(2.1) 
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where 

(2.2) 

The stream function Y, the vorticity 5 and the velocity components u and u in the 
P and 8 directions are connected by the relations 

<= -V2Y, (2.3) 

1a!P a(Y u=-- 
r ae 

and LIE --, 
at 

(2.4) 

The boundary conditions that are imposed upon the body surface are the usual 
impermeability and no slip condition for all time. As th.e distance from the cylinder 
becomes very large, it is assumed that the flow will approach more and more that 
of an irrotational flow. These boundary conditions can be written as 
For t30. 

YL-%() 
at at Y= 1, (2.5) 

and 

and, therefore, from (2.3 ) [=O as i’+ #x’. (2.5) 

It is convenient to work with the deviation $ from the irrotational flow instead of 
Y so let us write 

Y(r, 0) = q(,r, 8, t) - 
( )i 

I -i sin 6. (2.7) 

The logarithmic transformation ?j = In r of the radial coordinate is desirable since 
the cells of the log-polar grid are smaller near the cylinder where the largest 
gradients occur in the flow. Equations (2.1) (2.2) and (2.3), by using (2.7) and 
4 = In r, reduce to 

where V’ = (ii’;?<‘) + (c7’/ZP) and 
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Substitution of (2.7) and ;’ = In r reduces (2.5) and (2.6) to, for t 3 0, 

and 

l/$=0 and $=2sint) at <=O (2.10) 

*=[=O as l+co. (2.11) 

Consider a disturbance stream function $(t, 8, t) to be superimposed on the 
steady laminar flow fi(& 19). This leads to 

where I+& and [satisfy (2.8), (2.9), (2.10). and (2.11). In other words, 

(2.14) 

where 

and 

[= -e-q72$, (2.15) 

&=O and ?=2sinB at 
i” 

l=O (2.16) 

+;=o as t-)co. (2.17) 

Substitution of (2.12) and (2.13) in (2.8), (2.9), (2.10), and (2.11) along with 
(2.14), (2.15), (2.16), and (2.17) leads to 

af a[ + (e"+e-')sinB(?B-(e'-e~")cosB- 
at I =-&V2[, (2.18) 

where 

[= --e -2SV2$, (2.19) 
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and 

r&&O 

Since the steady flow is assumed to be 
can be expanded in a Fourier sine series 

$(5, R= 1 
I,= I 

Use of (2.22) in (2.15) leads to 

at <=O (2.20) 

as <-+x. (2.21 j 

symmetrical, the stream function $(t> (1) 

Substitution of (2.22) and (2.23) in (2.16) and (2.17) leads to 

J;,(O) = 0 for ~7 = 1. 2..... 

and g(O)=0 for ~77=2. 3,... (2.25) 

and 

_~&)=U~,)=O for II = I. i.... (1.X) 

Let us assume that I,&(<, 8, t) is a reasonably well-behaved function throughout 
the domain, so that it can be represented in a Fourier series 

where uO, a,,, and 6, are the functions to be determined. 
Using (2.27) in (2.19) yields 

i^(i’,e*t)=--Al)(5,t)- f (A,(~,t)COSrzB+B,,(5,tjSin~28), (2.28) 
n=l 
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where A,,((, t) = em “(a2aO/a~‘), A,((, t) = eP2’((~‘a,,/~<‘) - PZ~LZ,), and 

(2.29) 

Substitution of (2.22), (2.23), (2.27), and (2.28) in (2.18) leads to an equation in 
which the terms of sin n% and cos nB are linearly independent, so the equation is 
satisfied only if the coeffkients of sin n% and cos ~1% are identically equal to zero. 
This leads to 

(2.30) 

(2.31) 

+ (e5+e-‘)[(n+l)A.+, -(n-l)A,-,I+ f rn[~z,,~(~+~ 
,,I = 1 
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and 

0 for 12 = 1, 2,..., 

where 

Be,,= -B,,, &=A,,, Fp, = -F,‘,,, .f- ,1 = -A, 3 

a ~ 12 = a II > L,= -b,,, and B,=O. 

Use of (2.27) and (2.28) in (2.20) and (2.21) yields for t 2 0, 

b,,(O, t)=f$(O, t)=O for M = 2, 2,..,. 

and 

a,,(O, t) 25 (0, t) = 0 at for m = 0, l,... 

b,,(tx, t)=B,z(t,, t)=O for n = 1, 2,..., 

a,,,( 5 c% * t)=Anr(&, t)=O for ~2=0, I..... 

(2,331 

(2.34) 

(2.35) 

(3.36) 

Equations (2.29), (2.30), (2.31), (2.32), (2.33), and (2.34) along with boundary 
conditions (2.35) and (2.36) form a coupied nonlinear infinite system of partiaH dif- 
ferential equations to be solved for a,, a,,, b,, -4,, A,,, and B,, for given f, and F,,. 
Once this system is solved, the flow field is known since the stream and vorticity 
functions can be reconstructed from the assumed series expansions 

$(t, 0, t) = ad& f) + 1 [a,,(<, t) cm no + (f,(5) + b,,jL;, t)) sin r701 
!7 ‘7‘ \&.3 ! 

n=1 

and 

(it, 8, t) = --A,(<, I) - f [A,((, t) cos no+ (F,,(t) + B,,(t, t)) sin rz6]. (2.33) 
II = 1 
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The infinite system given by (2.29), (2.30) (2.31), (2.32), (2.33). and (2.34) is made 
finite by truncating the stream and vorticity functions series in (2.37) and (2.38) at 
N. That is, we set 

f,(t) = F,dS) = a,(& t) = A,,(<, t) = b,(t, tj = B,,(t, t) = 0 for II> N. (2.39) 

3. NUMERICAL SOLUTION TECHNIQUE 

The system of equations (2.29), (2.30), (2.31) (2.32), (2.33), and (2.34) was 
integrated numerically by the following steps: 

(1) At time t = 0, we selected the disturbances which are modeled on the 
physically realizable system. In other words, a,,((, O), h,,(<, 0), Am(<) 0), and 
B,(c, 0) are known initially. 

(2) The values of A, and B, on the surface of the cylinder can be explicitly 
obtained from (2.29) by using (2.35). These are given (Pate1 [13] j by 

A,,(O, t) = 
k,(l, t) 

AZ for 171 = 0, l,..,, N 

and (3.1) 

2b,s4 t) 
B,(O, t) =h’ for IZ = 1, 2,..., N. 

(3) Far away from the cylinder, the disturbed flow will not be necessarily 
symmetric and also we use a finite boundary, therefore, the smooth boundary 
conditions (Fornberg [7]) 

1 

$L, t)=O and 

are used. This leads to 

$!?(i,, tj=!?$!f((,. t)=o 
i’ 

and 

g,, t)=O 

for /?I = 0, l,..., N 

(3.2) 

for II = 1, 2 ,..., N. 

(c%x,,/X)(4,, t) is replaced by (-3a,(5,, t)-ttu,,({,-,, 1)--~7,,(4,~~, t))/% in 
(3.2 j and this gives 

a,11(5,, tj = 
(4~,(5-~, +4A5,-2T tj) 

3 
for tn = 0, l,..., N. (3.3) 
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Similarly, one can get 

(i!Fii?<)(~,, , 1) =0 and (LQL?c) (5, , t) = 0 are also used to generate the steady 
solutions. 

Equations (2.30), (2.31), (2.32), (2.33 j, and (2.34) are solved by using the 
Crank-Nicolson method. By taking the average over the interval from l to I + A!. 
(2.32) can be written as 

+ 

+ F,,, L?a, + 12 ?a,,, ~ ’ 

a< fly >I >I3 for n = 2, 3,..., AL (3.3 -1 

By replacing the space derivatives by the central differences in (3.5 j: one gets the 
tridiagonal system for -4, and this tridiagonal system along with (3.1) and f3,4) is 
solved by the direct factorization method (Na [lo]), 
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(4) The system (2.29) along with the boundary conditions 

for FPZ = 0, l,..., N 

and (3.6) 

b,(O, I)=$,, t)=O for n = 1, 2,..., N 

form the system of two-point boundary value problems for a, and 6,. The left-hand 
sides of (2.29) contains A, and B,l whose values at all points in the held of com- 
putation are known at each time step. This is solved by the Hermitian method as 
described by Collatz [l]. Let k be the spatial step of discretization and yi, 1~; and 
yr be the values of I’, its first and second derivatives at node i. Then 

(3.7) 

The equation 

Pa, 
F 

- m’a,,, = e2;A ,?3 for ~12 = 0, l,..., N 

can be written by using (3.7) as 

h’ =- 
12 Ce 2rf+l.4m(5i-I, tj+ 10e”fA,,,([i, t)+e2g1+IA,,(ti+,, t)] 

for m = 0, l,..., N. (3.8) 

Equation (3.8) with boundary conditions (3.3) and (3.6) reduces to the 
tridiagonal system which is solved by the direct factorization method. Thus am is 
computed at all points in the field of computation and similarly b,, is also com- 
puted. 

(5) Time was increased by At; i.e., t,,, = told + At. 

(6) Step (2) was repeated. 

All of these steps were repeated at further times. 

4. RESULTS, DISCUSSION, AND CONCLUSION 

The computations were carried out for values of the parameters shown in Table I 
on the Cyber 170/720 system at Humboldt State University, Arcata. The steady 
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TABLE I 

Re 

10 
20 
40 

loo 

N h=Ai rx 

20 ll,‘40 102.909 
20 7(!40 102.909 
40 n/40 102.909 
25 $40 102.909 

2 t 

4.00 0.01 
4.00 0.01 
0.25 0.01 
0.25 0.01 

solutions are obtained as a limit of the solutions of the time-dependent equations 
by the finite series truncation method as basically described by Pate1 [12]. 

In order to study the stability, we have to disturb the steady flow. The distur- 
bance must satisfy the boundary conditions (2.20) and (2.21) and must be com- 
patible with the present scheme. We have the steady flow around the cylinder and 
in order to disturb the flow, let us give an impulsive velocity L’.Y=O and P’,.= x to 
the surface of the cylinder where V,Y and VV are the velocity components in the x 
and 1’ directions and r is a constant. This displaces the steady flow and the distur- 
bance starts at t = 0. VY and VY are given in terms of u and L’ by 

P’, = 11 cos 19 - 1’ sin 0 and Vj = II sin e + 1’ c5s 0. i3.i) 

Using (2.41, (2.7), (2.12), (2.22), and (2.27) along with Y = & in (4.1), one gets the 
impulsive velocity components 

C’.,(5.Q,r*)~~=o=-l+cos28+cos6 i I? 
,I = 1 

x [ -a,(O, t*) sin n8 + (b,?(O, 1”) +f,,(O, f*jj cos ~103 

+ sin 0 
i 

zL ‘2a 
2 (0, t*) + 1 

5 
n=, 

! 
-g (0, t*j cos no 

( 
s(O, t*)+-J(O, t*j ?f 

- 
+ 

ar' at ! II 
sinA 

and (4.3) 

V,.(C, 6, t”) );=,=sin28fsin@ ? n 
?I=‘ 

x [ -aJO, t*) sin n6+ (6,,(0, r*) +.i;,(O. t*)) cos nH] 

- 

+ 
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of the surface of the cylinder as t*-+O. Thus V.Jt, 6, t*) lcZO=O and 
V,.(<, 8, t*) /: =o = CI gives only two equations to determine a,(O, t*), b,,(O, t*), 
a,(O, t*), (&~$8~)(0, r*), (%,,/@)(O, t*), and (&~,/8~)(0, t*) and, therefore we 
arbitrarily select ~(0, t*) = (L?a,/@)(O, t*) = 0, b,(O, t*) = (%,Ja<)(O, t*) = 0 for 
n = 1, 2,..., N and a,(O, t*) = (&z,/8()(0, t*) = 0 for yn = 2, 3,..., N and substitute in 
(4.2). This leads to 

( 
$(O, t*)--a,(O, t*) sin8cos8=0 

> 

and (4.3) 
aa, u,(O, t*) sin2 8 +- (0, t*) cos2 8 = a. 
8:: 

This gives (&z,/$<)(O, t*)=u,(O, t*) =c( and using a forward difference in 
(Ai-,/CYt)(O, t*) = a, one gets 

u,(h, t*)=a(l +h). (4.4) 

Initially we selected 

u,(h,O)=cc(l +A) (4.5) 

and the rest of a, and b,, equal to zero. Using (4.5) in (3.1) gives 

(4.6) 

and the rest of -4, and B,, equal to zero. 
Thus (4.6) are the initial conditions for the parabolic partial differential equations 

(2.30) (2.31) (2.32), (2.33), and (2.34). Equations (4.5) and (4.6) correspond to the 
impulsive velocity Vy = c( of the surface of the cylinder. The values of CI and time 
step At used for calculations for various Reynolds numbers are also given in 
Table I. The values of the drag coefficient C, and the lift coefficient CL are com- 
puted (Pate1 [ 131) from 

and 

The boundary conditions 

(4.7) 

ay 0 -z 
ag 

and -+ co are impbsed at P, = 102.909. 



SYMMiTRY OF FLOW 

TABLE II 

Re .v r )ri CO L d 

20 20 111.318 2.018 2.86 j 136.21- 
20 20 102.909 2.016 2.865 136.22 
20 20 87.950 2.013 2.863 136.23’. 
40 40 102.909 1.504 5.433 !26.37- 
40 40 87.950 1.502 5.433 126.37 

In order to check whether this distance is far enough, w’e moved P, in and out and 
checked whether the flow picture changes significantly. The results of some 
parameters for the steady solutions are given in Table 11 where L is the distance 
from the center of the cylinder to the tip of the eddy and Q, is the angular distance of 
the point at which the streamline leaves the surface of the cylinder from the front 
stagnation point. The values of the coordinates of two points on the streamline 
‘Y=O.O with the same height from the axis of symmetry at various times are given 
in Table III for Re = 20 and CI = 4.0 when the boundary conditions were imposed at 
different rr The values of P,, P’!* and L’= .*:’ v;. -I- 11~;) at two symmetrically 
opposite points about the axis of symmetry with the given s and J coordinates in 
the wake at various times for Re =40 and I = 0.25 are given in Table IV for 
different Y ~ ~ 

For Re = 40 and o[ = 0.25, rr was not moved out because of the limited size of 
the computer memory. There is not a significant change in the fiow field as we 
move I’, in and out as can be seen from Tables IILIV and, therefore, the choice of 
r 71 = 102.909 is probably safe. All calculations presented are carried out by using 
I ~ = 102.909. 

Some of the results for the steady solutions along with the results of others are 
given in Table V for comparison. The values of C, and L for Re = 20 and 40 are in 

30 111.318 -2.813 
-2.813 

102.909 - 2.813 
-2.812 

87 950 -2.813 
-2.811 

40 111.318 - 2.833 
- 2.796 

102.909 -2.832 
- 2.796 

87.950 -2.832 
- 2.795 

0.049 
~ 0.049 

0.039 
~ 0.049 

0.049 
- 0.049 

O.G49 
- 0.049 

0.049 
~ 0.049 

0.049 
- 0.049 
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(b) 

1.0 - 

(cl 

r=-1.0 

-0.5 

FIG. 1. The development of the streamlines with time for Re = 10 and a = 4.0. 
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W 

FIGURE l-Conrinued 

TABLE IV 

2 102.309 - 5.203 
- 5.203 

87.950 - 5.203 
- 5.203 

10 102.909 - 5.203 
- 5.203 

87.950 - 5.203 
- 5.203 

20 102.909 - 5.203 
- 5.203 

87.950 - 5.203 
- 5.203 

0.09 1 0.469 -0.015 0.469 
-0.091 0.400 -0.346 0.529 

0.091 0.469 - 0.002 0.469 
-0.091 0.400 -0.340 0.525 

0.091 1.516 0.112 I.520 
-0.091 1.537 - 0.206 1.551 

0.09 1 1.516 0.107 1.519 
- 0.09 1 1537 -0.201 1.550 

0.09 1 0.053 0.181 0.188 
-0.091 0.043 -0.174 0.179 

0.09 1 0.053 0.175 0.183 
-0.091 0.043 -0.169 0.174 
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TABLE V 

Reference Re 

Taneda [ 171 10 
20 
40 

Underwood [ZO] 10 
Dennis and 10 

Chang [4] 20 
40 

Nieuwstadt and 10 
Keller [ll] 20 

40 
Coutanceau and 10 

Bouard [3] 20 
40 

Fornberg [7] 20 
40 

Jafroudi and 10 

Yang C91 20 
40 

Present paper 10 
20 
40 

co L 4 

3.5 
2.846 
2.045 
1.522 
2.8283 
2.0530 
1.5504 

2.0001 
1.4980 
2.647 
1.927 
1.555 
2.839 
2.014 
1.504 

1.6 - 
2.8 - 

5.2 127’ 
1.24 150’ 
1.53 150.40” 
2.88 136.30” 
5.69 126.20” 
1.434 152.04” 
2.786 136.63” 
5.357 126.66” 
1.68 147.50” 
2.86 135.20” 
5.26 126.50” 
2.82 134.86” 
5.48 124.79” 

159.722” 
138.667” 
128.578” 

1.513 150.60” 
2.864 136.22’ 
5.433 126.37” 

good agreement with those of Fornberg [7] while the values of C,, L, and d for 
Re = 10, 20, and 40 reasonably agree with those of Dennis and Chang [4]. 

Reynolds Number 10 

The development of the streamlines for the Reynolds number 10 with N= 20 and 
CI = 4.0 at various times is shown in Fig. 1. At t = 2, the streamline Y= 0.0 has 
moved upward on the side of the inflow and moved downward on the side of the 
outflow and the vortices are not seen. At t = 10 and 20, two vortices are clearly seen 
in Figs. lb and c. Almost symmetrical wakes are seen at t = 30 in Fig. Id. The 

TABLE VI 

t x Y t x J 

30 - 1.495 0.026 70 - 1.487 0.026 
- 1.477 -0.026 - 1.486 - 0.026 

40 - 1.488 0.026 80 - 1.487 0.0’6 
- 1.385 - 0.026 - 1.486 - 0.026 

50 - 1.488 0.026 90 - 1.488 0.026 
- 1.486 - 0.026 - 1.486 - 0.026 

60 - 1.488 0.026 100 - 1.488 0.026 
- 1.486 -0.026 - 1.486 - 0.026 
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0 is S’O 
t 

JS 100 

FIG. 2. The development of CD and C, with time for Re = 10 and x = 4.0 

values of the coordinates of two points on the streamline Y =O.O with the same 
height from the axis of symmetry are given in Table VI at various times. 

It can be.seen from the values of the coordinates from Table VI that the upper 
vortex is almost equal to the lower vortex. Almost symmetrical streamlines are seen 
at t = 100 in Fig. le. It is clear that the disturbance has not died out completely for 
a long time, and it is doubtful that the flow will ever be symmetrical in the strictest 
sense. The development of the drag coefficient C, and the lift coefficient C, is given 
in Fig. 2. 

Reymlds Number 20 

Figure 3 represents the deveiopment of streamlines with N= 20 for Re = ‘0 at 
various times for CY = 4.0. At r = 2, the streamline Y = 0.0 has moved down on the 
side of the outflow and moved upward on the side of the inflow. The vortices are 
completely gone. In Figs. 3b and c at t = 10 and 20 two vortices are seen but they 

TABLE VII 

I x 

30 -2.813 
-2.812 

40 -2.832 
- 2.796 

50 -2.838 
-2.791 

60 - 2.330 
- 2.800 

? 

0.049 
- 0.049 

0.049 
- 0.049 

0.049 
- 0.049 

0.049 
- 0.049 

I z 

70 - 2.820 
-2.810 

80 -2.812 
-2.818 

90 - 2.809 
- 2.822 

100 - 2.807 
- 2.823 

0.049 
- 0.049 

0.049 
- 0.049 

0.049 
- 0.049 

0.049 
- 0.049 
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(a) 

1.0 

(c) 
-g-=-1.0 

- 0.5 

-0.1 /---- 

FIG. 3. The development of the streamlines with time for Re = 20 and CI = 4.0. 
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FIG. 4. The development of CD and C, with time for Re = 20 and N = 4.0. 

TABLE VIII 

2 - 5.203 0.09 1 0.469 -0.015 0.469 
- 5.203 -0.091 0.400 -0.346 0.529 

10 - 5.203 0.091 1.516 0.112 1.520 
- 5.203 -0.091 1.537 - 0.206 1.551 

20 - 5.203 0.09 1 0.053 0.181 0.188 
- 5.203 -0.091 0.043 -m0.174 0.179 

30 - 5.203 0.091 0.089 0.188 0.208 
- 5.203 -0.091 0.088 -0.174 0.195 

40 - 5.203 0.09 1 0.075 0.185 0.200 
- 5.203 -0.091 0.083 -~0.182 0.200 

50 - 5.203 0.091 0.072 0.179 0.193 
- 5.203 -0.091 0.069 -0.191 0.203 

60 - 5.203 0.09 1 0.068 0.178 0.191 
- 5.203 -0.091 0.063 -0.194 0.204 

70 - 5.203 0.09 1 0.065 0.178 0.190 
- 5.203 -0.091 0.060 -0.196 0.205 

80 - 5.203 0.091 0.064 0.179 0.190 
- 5.203 -0.091 0.058 ~ 0.196 0.204 

91 - 5.203 0.09 1 0.062 0.181 0.191 
- 5.203 -0.091 0.057 -0.194 0.202 

100 - 5.203 0.091 0.061 0.183 0.193 
~ 5.203 -0.091 0.057 -0.192 0.20 1 
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oscillate alternately. Figure 3d shows approximately symmetrical streamlines a? 
t=30. 

Table VII gives the values of the coordinates of two points with the same height 
from the axis of symmetry on the streamline Y = 0.0 at various times. The lengths 
of the vortices are not equal; though at t = 30 and 80, they are almost equal. From 
Table VII, it can be seen that at t = 40. 50, 60, and 70 the upper vortex is slightly 
longer than the lower vortex; also, this can be seen in Fig. 3e at t = 60. At I = 80, 90. 
and 100, the lower vortex is slightly longer than the upper one. This is represented 
in Fig. 3f at t = 100. It is clear that the wake trails oscillate slightly and the flow is 
not symmetrical in the strictest sense of symmetry. In Fig. 4, the development of the 
drag coefficient C, and the lift coefficient C, is given. 

The development of the flow pattern for Re = 40 with N= 40 and rx = 0.25 at 
various times is shown in Fig. 5. The numerical procedure breaks down for E > 0.5. 
In Figs. 5a and b at t = 2 and 10, the vortices are shed; while, in Fig. 5c at I = 20, 
the disturbance begins to decay and the two standing eddies have begun to develop. 
At t = 30 and 40 in Figs. 5d and e, the wakes oscillate while at t = 50 and 60 in 
Figs. 5f and g, the disturbance seems to be dying and the flow seems to be restoring 
to the symmetrical form. Again, the oscillations of the wakes are seen at t = 70 and 
80 in Figs. 5h and i. In Figs. 5j and k at t = 91 and 100 the wakes are not sym- 
metrical. This can also be seen from Table VIII which gives the values of d’,, ““> , 
and P’= t: ! LFY + P’: at two symmetrically opposite points about the axis of sym- 
metry with the given x and y coordinates in the wake at various times. It seems that 
the flow at Re = 40 depends on the initial disturbance. The development of the drag 
coefficient C, and the lift coefficient C, is given in Fig. 6. 

Reynolds Number 100 

In order to check whether the initial disturbance triggers the vortex shedding, the 
computations were carried out for Re = 100 with N= 25 and E = 0.25 up to t = 100. 
The computations for higher N need more computer time and our interest is very 
limited, therefore, computations were not carried out for higher N. The results are 
shown in Fig. 7. At t = 2, only one vortex is seen in Fig. 7a. Figure 7b at I= !O 
shows the development of two asymmetric vortices. One of the vortices is captured 
by the stream flow and this marks the beginning of the vortex shedding. In Figs. 7c 
and d at t = 20 and 30, vortex shedding is clearly seen; also vortices are shed alter- 
nately from the two sides of the cylinder. Vortex shedding continues as can be seen 
in Figs. 7e-k at t = 40, 50, 60, 70, 80, 90, and 100 alternately from the two sides of 
the cylinder. The initial disturbance is not decaying but, in fact, triggers the vortex 
shedding. In Fig. 8, the development of the lift coefficient C, and the drag coef- 
ficient C, is given. 
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(b) 

0.5 

1.0 

FIG. 5. The development of the streamlines with time for Rc=dn 2nd m=n ?< 
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FIGURE 5-Continued 
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t = -1.0 

(k) 

1.0 

FIGURE 5-Continued 

F1c.6. The development of CD and C, with time for Re=40 and z=OX 
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FIG. 7. The development of the streamlines with time for Re = 100 and cx = 0.25. 
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FIGURE L-Continued 
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FIGURE l-Conrinued 

-0.002 
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FIG. 8. The development of CD and CL with time for Re = 100 and x = 6.25 
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(a) 
w=-1.0 

(b) 
*Z-l.0 

FIG. 9. The development of the streamlines with time for Re = 10 and a = 0.25 
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FIGURE 9-Continrted 
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FIGURE 9-Continued 
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FIGURE Y-Continued 

ReJxolds Number 10 

The initial disturbance (4.5) with c( =0.25 was apphed for Re = 10 and N= 20 
and then a,(/~, r) =0.25(1 +II) was used up to t= 1. This disturbance may corre- 
spond to an electromagnetic phenomena which gives impulsive velocity i’,, = 0 and 
F’,. = x to the cylinder up to t = 1 in the steady flow. The development of the 
streamlines are shown in Fig. 9 at various times. In Fig. 9a at t = 10, vortices are 
not seen. One developing vortex is seen in the upper part at t = 20 in Fig. 9b. At 
r = 30, one vortex in the upper part is seen in Fig. 9c, while Fig. 9d at t = 40 shows 
one vortex in the lower part of the flow. The vortex in the lower part remains until 
P = 100 as shown in Figs. 9eei at t = 50, 60, 70, 80, and 90. At I = 100, the closed 
vortex is seen in the upper part of the flow in Fig. 9j and the flow has not restored r 
to symmetrical form. The values of k’,, V,, and V’= j C< + -$ are given in Table IX 
at two symmetrically opposite points about the axis of symmetry with the given x 
and y coordinates in the wake at various times and from those values: it is clear 
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TABLE IX 

I x J’ 10 vy 10VJ 101’ 

5 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 

120 

- 1.481 0.026 0.058 - 1.138 1.140 
- 1.481 ~ 0.026 0.049 2.721 2.721 
- 1.481 0.026 -0.036 - 2.258 2.259 
- 1.481 - 0.026 -0.017 1.654 1.654 
- 1.481 0.026 - 0.026 ~- 1.934 1.934 
- 1.481 - 0.026 -0.027 1.833 1.833 
- 1.481 0.026 - 0.028 - 1.793 1.793 
- 1.481 - 0.026 - 0.030 1.932 1.932 
- 1.481 0.026 - 0.029 - 1.784 1.784 
- 1.481 - 0.026 -0.031 1.925 1.925 
- 1.481 0.026 - 0.030 - 1.800 1.800 
- 1.481 - 0.026 -0.031 1.900 1.900 
- 1.481 0.026 - 0.030 - 1.817 1.817 
- 1.481 - 0.026 -0.031 1.880 1.880 
- 1.481 0.026 - 0.030 - 1.829 1.829 
- 1.481 - 0.026 -0.031 1.865 1.865 
~ 1.481 0.026 - 0.030 - 1.838 1.838 
- 1.451 - 0.026 -0.031 1.855 1.855 
- 1.481 0.026 - 0.030 - 1.843 1.843 
-1.481 - 0.026 -0.031 1.849 1.850 
- 1.481 0.026 - 0.030 - 1.846 1.846 
- 1.481 - 0.026 -0.031 1.847 I.847 
- 1.481 0.026 - 0.030 - 1.844 1.844 
- 1.481 - 0.026 -0.031 1.818 1.848 
- 1.481 0.026 - 0.030 - 1.840 1.841 
- 1.481 - 0.026 -0.031 1.852 1.852 

3- 
CD 

2- 

CD 

l- 

0 25 
5o t 75 10 0 

2 

0 

CL 

2 

FIG. 10. The development of CD and CL with time for Re = 10 and u = 0.25. 
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that even at t = 120 the flow is not symmetrical. In Fig. 10, the development of the 
drag coefficient C, and the lift coefficient C, is given. Since the disturbances have 
spread far away from the beginning, this keeps the flow asymmetric. The initial dis- 
turbance applied to the symmetric flow at Reynolds number 40 does not grow; 
however, initially, it triggers the vortex shedding. The flow remains unsteady aad 
asymmetrical for a long time as observed experimentally. While the initial distur- 
bance at Re = 100 triggers the vortex shedding. In the case of Reynolds number 20, 
the trace of the initial disturbance oscillates the wake trails slightly. The flow does 
not become symmetric in the strictest sense even at Reynolds number 10 after a 
long time after the initial disturbance; on the other hand, by applying he distur- 
bance continuously up to t = 1, we do not even have two nearly symmetrical wakes. 
It indicates that the symmetry of the flow around the cylinder depends upon the 
disturbance level in the flow. It is observed in this work that there exists an initial 
disturbance for which the flow at Re = 40 is not symmetrical for a long time. 

The computations were carried out for Re = 40 and z = 0.25 by using N = 35 and 
N= 40. The graphs of streamlines and equivorticity lines at I= 2, 10, and 20 were 
almost identical for N = 3.5 and 40. However, these values of N are not well 
separated. 
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